Search results for "mathematical analysi"
showing 10 items of 2410 documents
Two-dimensional Banach spaces with polynomial numerical index zero
2009
We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.
Derivation of a Homogenized Two-Temperature Model from the Heat Equation
2014
This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]
On asymptotic behavior of solutions to higher-order sublinear Emden–Fowler delay differential equations
2017
Abstract We study asymptotic behavior of solutions to a class of higher-order sublinear Emden–Fowler delay differential equations. Our theorems improve several results reported recently in the literature. Two examples are provided to illustrate the importance and advantages of new criteria.
Global Lp -integrability of the derivative of a quasiconformal mapping
1988
Let f be a quasiconformal mapping of an open bounded set U in Rn into Rn . Then f′ belongs to Lp(U) for some p > n provided that f satisfies (a) U is a uniform domain and fU is a John domain or (b) f is quasisymmetric and U satisfies a metric plumpness condition.
A singular (p,q)-equation with convection and a locally defined perturbation
2021
Abstract We consider a parametric Dirichlet problem driven by the ( p , q ) -Laplacian and a reaction which is gradient dependent (convection) and the competing effects of two more terms, one a parametric singular term and a locally defined perturbation. We show that for all small values of the parameter the problem has a positive smooth solution.
Elliptic equations and maps of bounded length distortion
1988
On considere l'equation elliptique d'ordre 2: L(u)=Σ i,f=1 n ∂ 1 (a ij ∂ ju )=0 ou les coefficients a ij sont des fonctions C 1 dans un domaine D de R n
Characteristic asymptotics for fast chemical reaction
1995
The tusk condition and Petrovskiĭ criterion for the normalized p‐parabolic equation
2019
We study boundary regularity for the normalized p-parabolic equation in arbitrary bounded domains. Effros and Kazdan (Indiana Univ. Math. J. 20 (1970) 683-693) showed that the so-called tusk condit ...
Global Existence for Nonlinear Parabolic Problems With Measure Data– Applications to Non-uniqueness for Parabolic Problems With Critical Gradient ter…
2011
Abstract In the present article we study global existence for a nonlinear parabolic equation having a reaction term and a Radon measure datum: where 1 < p < N, Ω is a bounded open subset of ℝN (N ≥ 2), Δpu = div(|∇u|p−2∇u) is the so called p-Laplacian operator, sign s ., ϕ(ν0) ∈ L1(Ω), μ is a finite Radon measure and f ∈ L∞(Ω×(0, T)) for every T > 0. Then we apply this existence result to show wild nonuniqueness for a connected nonlinear parabolic problem having a gradient term with natural growth.
On Whitham and Related Equations
2017
The aim of this paper is to study, via theoretical analysis and numerical simulations, the dynamics of Whitham and related equations. In particular, we establish rigorous bounds between solutions of the Whitham and Korteweg–de Vries equations and provide some insights into the dynamics of the Whitham equation in different regimes, some of them being outside the range of validity of the Whitham equation as a water waves model.